I am delighted to see the recent news coverage about the Ouroboros paper being accepted to Crypto 17, the most prestigious cryptography event of the year. No other blockchain protocol, apart from Bitcoin, has achieved this level of academic peer review. This is recognition from the academic community that this paper is a serious contribution to cryptography, in being the first Proof-of-Stake protocol to be provably secure. In computer science, what matters in terms of gaining a stamp of approval for new research is not being published in journals, as is the case in many other fields. Instead, what is most important is having the paper accepted by conferences to be scrutinised by fellow academics. This is why we are very proud that our researchers’ work has been admitted to Crypto 17.
The conference takes place in California during August and topics covered include all aspects of cryptography, not only Bitcoin and blockchain.
Developing a secure Proof-of-Stake protocol is one of the big problems to solved in cryptography. It is the key to blockchains being scaled up to handle many more users than it can at the moment. You only have to look at the hurdles that Proof-of-Work based Bitcoin is facing, as it undergoes a struggle to upgrade its technology, to see why Proof of Stake is important.
Proof-of-Stake protocols have the advantage of avoiding the huge computer processing resources demanded by Proof-of-Work systems – one study showed that the energy required to run Bitcoin’s blockchain was equivalent to the power consumed by a small country.
It is highly unusual for a new protocol to progress this quickly from research to implementation, with publications usually taking years to mature for real-world use. Our researchers know of no other cryptography paper that has progressed through peer review this fast. Ouroboros is already being applied to industry use – it is going into Cardano, a blockchain platform being developed by IOHK.
Professor Aggelos Kiayias, who led the research, says: "Building a secure Proof-of- Stake blockchain is an important open problem and I am very happy that we will share our progress towards its resolution with fellow cryptographers at Crypto this year. In Ouroboros, we flesh out for the first time the combinatorial nature of proving the security of Proof of Stake blockchain protocols and I anticipate that our methodology will be valuable widely to blockchain researchers.
"By developing a provably secure Proof-of- Stake protocol, we can now confidently build a blockchain that can handle many more users, resolving many of the scalability and performance issues faced by proof-of- work based protocols like Bitcoin. We have already implemented Ouroboros and tested it with a cloud deployment with very good results."
"With Ouroboros, as well as the upcoming version of our protocol ‘Ouroboros Praos’ that will be released soon, IOHK is at the forefront of efficient and secure blockchain research and development," Prof Kiayias adds.
Crypto 17 is the 37th International Cryptology Conference. It will be held from August 20 to 24 this year, at the University of California, Santa Barbara, and is sponsored by the International Association for Cryptologic Research (IACR).
Further information on the Ouroboros paper is also available in a series of videos.
A solution for scalable randomness
SCRAPE can handle far more users than previous solutions and can be applied to blockchain protocols, electronic voting, anonymous instant messaging and more
6 June 2017 7 mins read
It is well known that randomness is a fundamental resource for secure cryptographic schemes. All common encryption and authentication schemes are only as secure as their randomness sources are good. Using a poor randomness source can basically render insecure every cryptographic scheme that would otherwise be secure. In many cases, it is sufficient to have a trustworthy local source of fresh randomness (e.g. your operating system’s randomness pool or a Random Number Generator (RNG) embedded in your CPU). However, in many distributed applications, it is necessary to use a publicly accessible source of randomness that allows users (and external observers) to make sure they are all getting the same random values. With such applications in mind, in 1983 Michael Rabin introduced the concept of a randomness beacon, a publicly accessible entity that provides a periodically refreshed random value to its clients. More recently, NIST, the National Institute of Standards and Technology in the United States, started offering a randomness beacon service that derives its randomness from quantum physical processes.
When users are willing to trust a centralised randomness beacon they can simply choose one of them to perform this role or use a publicly available beacon, such as the one from NIST. However, standard randomness beacons provide no means for users to verify that the output values are indeed random and not skewed in a way that gives an advantage to an attacker.
As we know, cryptographic schemes have suffered both from poor implementations and from governmental agencies (e.g. the NSA) that actively work to undermine existing and future standards. In this context, a centralised randomness beacon could be providing bad randomness because of simple implementation mistake or in order to do the bidding of third party attacker who has undermined the central randomness generator or simply presented the people running the service with a subpoena that compels them to do so.
Using a coin tossing protocol (a concept also introduced by Rabin in 1981) is an obvious approach to (partially) solve this problem. Coin tossing allows several users to come together and generate an output that is guaranteed to be uniformly random without having to trust each other or any third party.
In a coin tossing protocol, good randomness is obtained if at least one of the parties is honest. If you run a coin tossing among many servers, somebody who trusts at least one of the servers can be assured that the output is truly random. In many applications (such as cryptocurrencies) we assume that at least half of all parties are honest by design.
Even though using coin tossing protocols solves the trust problem, it still does not make it any easier to ensure that all users will receive the random output. For example, a user with a faulty internet connection or an attacker who wants to mount a Denial-of-Service attack against the protocol (and consequently the application using the final randomness) can simply abort (i.e. stop sending protocol messages) before the output is obtained, keeping all the other users from receiving randomness. In fact, a malicious user can do even worse, he can execute the protocol up to the point where he learns the random output but still not send the final message that would enable the other users to also learn this output.
Tal Rabin and Ben-Or introduced a classical method for making sure all users receive the proper protocol output – assuming at least a majority of them is honest – in a seminal paper in 1989. The main idea is to use "secret sharing" to split each user’s input into "shares" that do not reveal any information about the input by themselves but allow for total recovery of the input if a sufficient number of them are put together. If each user is given a share of every other user’s input – such that the inputs can be recovered if more than 50% of the shares are pooled – malicious users still cannot learn anything because we assume that more than 50% of the users are honest. However, if a malicious user aborts the protocol at some point, the honest users can pool their shares to recover the malicious user’s input and finish the protocol by themselves.
This general approach can be used to make sure that all the users running a coin tossing protocol will receive the final random value. However, this still does not allow users and external observers to make sure that the output is being generated correctly. In order to do that, the users must use a kind of secret sharing that is publicly verifiable, meaning that anyone can make sure that the shares of inputs are correctly generated. This prevents malicious users from posting invalid shares and then aborting in such a way that the honest users cannot reconstruct their inputs. This approach has been used for generating publicly verifiable randomness in the Ouroboros Proof-of-Stake based, permissionless consensus protocol and for constructing a stand-alone randomness beacon in a paper by Syta et al. that will be presented at the IEEE Symposium on Security and Privacy 2017.
The main ingredient in building randomness beacons through this approach is Publicly Verifiable Secret Sharing (PVSS), a type of secret sharing scheme introduced by Stadler that allows users to split their inputs in shares whose validity can be promptly verified by any third party. Using such schemes, it is possible to construct coin tossing protocols with Guaranteed Output Delivery through the approach of Rabin and Ben-or, meaning that every user is guaranteed to receive the final randomness produced by the protocol. However, the PVSS scheme from Schoenmakers, which until recently was the most efficient PVSS scheme, still requires a number of modular exponentiations that is quadratic in the number of users, meaning that if there are n users running the protocol, verifying the n shares produced by one of them requires O(n^2) exponentiations. Note that this poses serious scalability issues since this quadratic overhead means that the number of expensive modular exponentiations required for verifying n shares grows quite a lot given even a small increase in the number of users.
In a recent joint paper with Ignacio Cascudo, SCRAPE: Scalable Randomness Attested by Public Entities that will presented at ACNS 2017 in Japan this July, we have solved this scalability problem by introducing a PVSS scheme that only requires O(n) modular exponentiations to verify n shares (5n modular exponentiations to be precise) while maintaining efficiency of all other protocol components. The main idea behind our protocol is to use a cheap information theoretical trick to verify the validity of shares instead of performing expensive modular exponentiations. As a result, our protocol requires only 5n modular exponentiations in the verification phase and 4n modular exponentiations in the distribution phase (where shares are generated), while the protocol by Schoenmakers requires 4n+(n^2)/2 exponentiations for verification and 4n+t exponentiations for distribution, where n is the number of users/shares and when n/2 shares are required for reconstructing the secret. Our efficient PVSS protocol can be used to improve the randomness generation component of Ouroboros and the recent result by Syta et al.
Recent posts
2021: the year robots, and graffiti came to a decentralized, smarter Cardano by Anthony Quinn
27 December 2021
Cardano education in 2021: the year of the pioneers by Niamh Ahern
23 December 2021
Cardano at Christmas (and what to say if anyone asks…) by Fernando Sanchez
21 December 2021